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Abstract 

A multi-baseline stereo-vision based approach is proposed 

to produce reliable obstacle information for real-time 

mapping and path-planning within an unknown indoor 

environment. The proposed method uses Sum of Absolute 

Differences (SAD) based stereo-matching to generate 

multiple point-clouds using a multi-baseline stereovision 

camera. The presented approach focuses on generating low-

noise, high-confidence 3D point clouds that serve as a 

reliable input to ICP-SLAM, mapping and path-planning 

modules of a full-scale navigation system. The resultant 

mobile robot navigation system performs superior when 

compared to a system fed with typical stereovision based 3D 

point clouds utilizing state-of-the-art noise-removal filters. 

In our work, we feed low-noise, high confidence point 

clouds to a pre-implemented ICP-SLAM module and the 

resultant 3D point cloud map is projected onto a 2D 

stochastic occupancy grid-map. The proposed mapping 

process is unique and is optimized for minimizing 

shortcomings and false positives (e.g. featureless surfaces, 

specular surfaces) involved in a typical stereo-matching 

process. Authors have shown through a statistically 

significant number of experiments that the resultant 

stochastic occupancy grid-map can be reliably used for 

path-planning within an unknown, dynamic indoor 

environment.  
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1. INTRODUCTION 

 
Through past two decades, special interest is paid to 

unmanned guided vehicle navigation using laser and vision 
based sensors. Recently, a renewed focus has emerged 
towards vision based navigation of mobile robots within 
indoor environments in order to perform complex tasks such 
as goods handing at factory floors, transporting office and 
healthcare materials within offices and hospitals, 
cleaning/wiping floors for general household etc. Almost any 
kind of indoor scenario usually exhibits a high amount of 
unstructured clutter leading to challenges in the perception of 
obstacles and navigable space. Our work in this article 
focuses on solving problems that arise from shortcomings in 
local stereo matching algorithms such as handling of 

specular reflections, lack of discriminative image features 
and repetitive patterns [1] within indoor environment. Most 
local stereo matching methods strive to remain within the 
realm of real-time algorithms while remaining accurate e.g. 
AdaptGCP [2], ADCensus [3] and SAD-IGMCT [4], to 
name a few. Instead of presenting completely new local 
stereo matching technique, we propose a novel higher-level 
filtering method that aims at minimizing the noise and 
patchy 3D information generated by local stereo matching 
techniques such as SAD. This higher-level filtering approach 
makes the proposed method suitable for filtering point 
clouds generated by any local stereo matching technique. In 
order to prove the viability and robustness of our proposed 
filter, we have integrated our filter into a fully functional 
mobile robot navigation system. A multi-baseline 
stereovision camera by Point Grey is used as the primary 
input sensor for our proposed method. We chose this camera 
due to its relatively high accuracy and performance profile 
[5]. The stereo camera gathers point cloud using 640x480 
resolution images @7.5FPS (frames per second) in both 
wide (24cm) and narrow (12cm) baseline configuration. The 
camera initialization in dual baseline mode and limited 
support for stereo-camera in 64bit Windows 7, are two 
implementation related factors that restrict the camera fps to 
down to 7.5. For the same reason we perform obstacle 
avoidance for obstacles at very short distances using a 
custom designed Laser scanner based Fuzzy-logic Motion 
Controller [17]. It must be mentioned here that even state-of-
the-art filters such as surface validation filter [6] and back-
forth validation filter [7] are unable to remove false positives 
due to specular surface reflections. Also these filters are 
unable to preserve 3D points belonging to featureless patches 
of stereo images while trying to minimize false positives. In 
our proposed work, three distinct 3D point clouds are 
generated using the two combinations (center-left, center-
right) of narrow baseline and one combination (right-left) of 
wide baseline lenses. The multi-baseline camera is shown in 
Figure 2 for reference. The observations for these point 
clouds are taken near simultaneously. The method then 
chooses ROI (Region of Interest) within each of the point 
cloud in order to choose the most accurate region within the 
point clouds. Each of the ROI is then projected onto a 
separate stochastic occupancy grid-map using a floor and 
obstacle detection method by Emaduddin et.al [8]. The 
updated cells lying within sensor observation cone, within 
each stochastic occupancy grid-map are then consolidated 
and mapped onto a single occupancy grid-map based on an 



intelligent criterion. The consolidated map is then passed 
through a custom designed filter that removes false positives 
from the occupancy grid-map using the occlusion and sensor 
cone visibility information from multiple observations that 
are separated temporally. The resultant grid-map is free, to a 
very high degree, from false positives generated by specular 
reflections and repetitive patterns. The final grid-map also 
stores, for each cell, the 3D location of a centroid calculated 
from all the points that were projected onto that particular 

cell. This extra information is used to reconstruct a down-
sampled, low-noise, highly reliable 3D point cloud, ideal for 
use in a landmark based SLAM algorithm. We use this 
reliable point cloud in a pre-implemented generic version of 
ICP-SLAM (Iterative Closest Point – Simultaneous 
Localization and Mapping) algorithm. The resultant 
localization proved to be far more accurate in the conducted 
experiments rendering accurate maps for navigation. 
Stereovision camera is mounted via a Pan-Tilt Unit by FLIR 
Systems, Inc(see Figure 3), on-board PowerBot – a mobile 
robotics development platform by Adept Mobilerobots Inc 
(see Figure 1) 

 
After outlining the previous work conducted in the 

domain of multi-baseline stereovision based navigation in 
section 2, section 3 illustrates the inner details of our 
proposed method by describing (i) Stereo Capture & ROI 
extraction (ii) Multi grid-map projection and consolidation 
(iii) Filtering via visibility checks (iv) 3D point cloud 
reconstruction from consolidated map (v) Navigation using 
the consolidated map. Section 4 details the results of 
conducted experiments. 
 

2. PREVIOUS WORK 
 

 The first practical use of occupancy grids can be 
attributed to Elfes [9]. Among the earliest uses of trinocular 
camera along with area tessellated into grid-cells, the work 
of Murray et al. [10] can be considered as reference. The 
proposed system in [10] has many short-comings including 

sensitivity to false positives when environment observation 
time is less (due to slower convergence rate while updating 
occupancy probability). In [1], an interesting occupancy 
grid-mapping technique is presented that uses both dense and 
sparse point clouds from Stereovision and SAM respectively 
(structure and Motion). In this case, although the algorithm 
appears to handle false positives relatively well but there 
exists a great margin for encountering outliers as no multi-
view multi-baseline stereo matching technique is utilized. 
Several other techniques were found in literature that attempt 
to utilize multi-baseline stereo at the level of local stereo 
matching or multi-view stereo in order to filter noise e.g. 
[11-14] but no technique was found to be using a higher-
level multi-baseline filtering or using it in combination with 
multi-view stereo filtering. 
      
3. PROPOSED METHOD 

The method is implemented as a system having client-
server architecture. A multi-threaded thin client application 
lives on-board the mobile robot while another multi-threaded 
much heavier server-side application resides on the server. 
Client-side consists of sensor data capture, motion control, 
ROI extraction, point cloud compression and network 
communications modules. Server-side includes Network 
communications, point cloud decompression, Multi grid-map 
projection & consolidation, 3D point cloud reconstruction 
and Navigation modules. Client-Server architecture is 
deployed in order to distribute the computation load of point 
cloud and grid-map manipulation to high-end server side 
processors and GPUs. While optimum navigation speed, 
real-time obstacle avoidance is not the focus of our work in 
this article, above architecture is put into place for the same 
reasons. 

 

 
Figure 2 Bumblebee XB3 multi-baseline stereovision camera by Point Grey 

Research Inc. 

 

 

Figure 3 Pan-Tilt Unit D-46 by FLIR Systems, Inc. 

3.1 Point-Cloud Capture & ROI Extraction:  
The client application that executes onboard the robot, 
constantly captures the 3D point clouds with three distinct 
baselines, mentioned in section 1, employing the stereo 
camera. None of the state-of-art filters listed in section 1 are 
applied to the stereo rectification process. After point cloud 

Figure 1 PowerBot by Adept Mobilerobots capturing stereo observations 

during a navigation task 



generation, ROIs are extracted from these point cloud 
following the presented limits. 

 
(i)       ROI for narrow baseline (left & center camera)  

z-axis: 0.1 m till 5.0 m 
 

(ii)      ROI for narrow baseline (right & center camera)  
z-axis: 0.1 m till 5.0 m 

 

(iii)       ROI for wide baseline (left & right camera)  
z-axis: 2.5 m till 5.0 m 

 

The system then compresses the data and transmits the 
three ROI to the server. Point-Clouds are compressed using 
Octree-based point-cloud compression technique [15], in 
order to minimize the observation transmission time and 
keep the method viable for real-time processing. It takes on 
an average, over 150ms for the data to be captured and 
transmitted over the network. The Bumblebee camera-pose 
       and the robot pose         are associated with each 
point cloud observation. This enables the method to reliably 
deduce localization information from ICP-SLAM module.  

 

 

Figure 4 Top: A view of an obstacle configuration. Bottom: Top view of 

actual 3D stereo clouds from both baselines (Blue shows narrow, Red 
shows wide and the over-lapping area has high confidence. 

3.2 Multi-grid Map Projection and Consolidation 
The point clouds received from the client application are fed 
into a well-tested Hough-transform based plane fitting 
technique detailed in [8]. This technique is employed to 

distinguish floor from the obstacles. Thus, for three point 
clouds (             , after the execution of plane fitting 
technique, three stochastic 2D occupancy grid-maps 
(            , will be populated respectively. In order to 
perform multi-baseline consolidation at this each vertex      

belonging to (            , is loaded with further information 
apart from a usual probability value i.e.  
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Equation II implements a binary Bayes Filter. Here 

                  is represented in log odds form [16] for time 

t.  (             |       ) represents the occupancy 

probability given the measurement   (  qualifies as a point 
that belongs to an obstacle). Details regarding the points that 
qualify as an obstacle are given in [8]. In Equation I, 
              indicates that the particular vertex of grid-map 
received an update from the current observation (currently 
received point cloud from the sensor). 
               

contains the centroid location of all 3D 

points contributing to the cell’s occupancy probability.  The 
           value can have three possible states i.e. low, 
medium and high.  

 
The consolidation process goes as follows: 
 

1. At the beginning of consolidation process set 
             

for all vertices to low 

2. For all the vertices      in (            , which receive 

update in form of a single or multiple points belonging 
to an obstacle, the value of                

 is set to 

medium. 
 

3. For all the vertices      in          , whose distance 

from robot center is less than 1.5 meter and which also 
receive update in form of a single or multiple points 
belonging to an obstacle, the value of                is 

set to high. This is done as wide baseline based stereo 
output produces very inaccurate 3D points for initial 1.5 
meters ahead of camera for the current configuration of 
stereo parameters that have be initialized for the our 
system. 
 

4. Now for three vertices a, b and c where 

                    
 

Do the following  
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                                                        } 



5. Add vertices      to the final consolidated grid-map   

for which        
is high 

 

Figure 5 The 66 degree 3D visibility cone for the Bumblebee stereo vision 

camera 

3.3 Filtering via visibility checks 
In this step, a set of view-rays is computed in 2D for the 
field-of-view (FOV) of the camera up to a predefined 
distance i.e. 5 m (see Figure 5). Each one of the view-ray is 
traversed while beginning at the current camera position. 
Each traversed cell probability         

 in grid-map   is set 

to a value of 1.0 until the first obstacle cell is reached. The 
remainder of the view-ray is skipped and the remaining cells 
lying on the view ray remain unchanged. False positives in 
this case mostly occur due to specular reflections or surfaces 
that do not follow Lambertian reflectance model. The 
distance of the first obstacle cell along with height of the 
               

 is stored in an indexed array 

                        . The index runs from 0 to 359 
degree, each index representing the view ray after every 1 
degree. After this, all cells lying on the view ray beyond the 
first obstacle cell are assessed for height, in case any cell is 
found to be with the less than the height of the closest 
obstacle, the cell’s probability value is increased (cleared) 
via a Bayesian update. The false positives in this case occur 
mostly due to reflections of surroundings on translucent or 
ultra-smooth surfaces. In case of a sensor having a 2D cone, 
the height check will be unnecessary and the cell will be 
cleared instantly. 

    
3.4 3D Point Cloud Reconstruction from Consolidated 

Map 

After the consolidated grid-map   is filtered and 

contains minimal false positives, now the process of 

reconstruction of down-sampled 3D point cloud can begin. 

The process is fairly simple as it consists of three short 

steps. 

1. Initialize a new point cloud   . 

2. Start iterating the filtered consolidated point cloud  . 

Whenever an occupied cell is encountered, a new point is 

pushed into    with                
 values of associated 

with the cell. 

3. When all occupied cells in   are exhausted, stop. 

 

3.5 Navigation using the Consolidated Map 

The focus of work in this article is the enhancement in the 

reliability of the stereovision input. For the purpose of 

evaluating the improvement in the localization, mapping 

and path-planning, reconstructed point cloud    is submitted 

to pre-implemented ICP-SLAM algorithm, robot pose along 

with camera pose is also submitted to the ICP-SLAM for 

each observation. The actual accumulation of 3D point 

clouds in a 3D global map is done by ICP-SLAM. The 

resultant 3D global map constantly updates a 2D global 

stochastic grid-map. This global grid-map is utilized by 

path-planning module for the purpose of path generation. A 

motion-planning module executing on-board the mobile 

robot awaits new path-points whenever path planning and  

re-planning is performed.  

 

4. EXPERIMENTATION AND RESULTS 

A brief comparison of 2D global grid-maps filtered by 
Triclops SDK (Point Grey Research Inc.) with the global 
grid-maps filtered by the proposed method, is presented in 
Figure 7 for reference. As already mentioned, we gather 
stereo point cloud sequences through the stereo-vision 
camera mounted on top of a mobile research platform. These 
sequences are gathered while the robot is in motion and 
robot/camera pose is bundled with each observation. The 
observations are processed online by the proposed method 
and in real-time. The maximum speed the robot achieves 
during navigation is 0.47 m/s. For comparison, the ground 
truth for the arena is also shown in Figure 6.  
 

 

Figure 6 Ground Truth for the occupancy grid-map 

5. DISCUSSION 

Figures 8 & 9 detail the path-planning and path-
execution performance for the generated map via our 
proposed filter. It should be reminded here that whenever 



filters are relaxed within low-feature environments to allow 
maximum number of feature points belonging to low-
featured obstacles, noise creeps in. In Figure 9, specifically, 
plain walls with vertical dark-colored stripes were part of the 
experiment environment. Vertical stripes were just 0.05m 
wide and repeated after every 2 meters on the wall. With 
such low number of features, extracting nearly 70% of wall 
points was considered to be a success for our method. The 
robot path is evidently optimized and can be considered 
optimal for unknown low-featured environments. Robots 
travelled with an average speed of 0.45 m/s during the 
experiments. Intelligent camera gazing was also part fot eh 
experiment implementation. This module helped focus the 
“gaze” of camera via a DPPTU towards the low-featured 
obstacles such as plain walls.  

6. CONCLUSION 

In this paper, a reliable multi-baseline stereovision filter 
for enhanced navigation in unknown indoor environments is 

proposed. Although the filter acts as small unit within a large 
navigation system, nevertheless its role is primary and 
crucial for successful and error-free navigation. Resultant 
grid-maps generated with the help of the filtered 
reconstructed point clouds by ICP-SLAM module show 
marked reduction. Noise present in stereo 3D point clouds 
causes a great deal of inaccuracy in localization and mapping 
output. Usually feature points based key points are used to 
improve localization output but this approach, in no way 
improves the inaccuracies and false positives in the mapping 
output. Thus the presented filter successfully reduces the 
noise within stereo point clouds rendering their effective 
usage in SLAM algorithms.  
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Figure 7 Stochastic Occupancy Grid-maps. LEFT: Mapping output from ICP-SLAM after application of proposed filter. The map contains minimal noise 
without the loss of fidelity. RIGHT: Mapping out from ICP-SLAM after application of Surface-size, Texture validation and Back-forth filter by Triclops 

SDK, Point Grey Research. The map looses fidelity at the cost of noise removal. 

                                      

Figure 8 Mapping output from ICP-SLAM used for path-planning and traversal within a room. Red arrows indicate camera gaze angle. Blue circle represents 
actual robot path. X-Y axis coordinates are shown in centimeters. 

Ground Truth 



                                                                                 
Figure 9 Mapping output from ICP-SLAM used for path-planning and traversal in a corridor. Red arrows indicate camera gaze angle. Blue circle represents 

actual robot path. X-Y axis coordinates are shown in centimeters.
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