
Accurate floor detection and segmentation for indoor navigation using RGB+D and stereo

cameras

Muhammad Emaduddin, Khalid Al-Mutib, Mansour

AlSulaiman, Hedjar Ramdane

Dept. of Computer Engineering

College of Computer Science and Information

King Saud University, Riyadh, Saudi Arabia

{memaduddin, muteb, msuliman, hedjar}@ksu.edu.sa

Ebrahim Mattar

Electrical & Electronics Engineering Dept.

College of Engineering, University of Bahrain

Kingdom of Bahrain

ebmattar@eng.uob.bh

Abstract

Real world indoor environments are rich in planar surfaces.

Floor detection or ground-plane detection is a crucial

requirement for a robotic navigation task. Despite frequent

successes in this area, problems with detection of navigable

floor with multiple planar and non-planar slopes at multiple

heights still exist. For robust and safe navigation, such small

variations such as floor joins, carpet deformities, raised

steps and floor gradients need to be detected and robot path

and kinodynamics plan must be adjusted accordingly. The

authors suggest a recursive RANSAC segmentation based

algorithm that estimates the dominant and sub-dominant

plane models for all the navigable planes within a detected

floor or a ground plane. The algorithm also divides the input

point clouds intelligently into multiple regions of interest for

both efficiency and accuracy enhancement. The recursive

estimation approach for determining plane parameters helps

to detect multiple planes within each region. Among other

benefits of this approach, reduction of search space size for

the estimation of plane parameters stands out to be the most

striking result of this work. This region wise plane

estimation approach also helps to reduce the computational

load by selectively dropping less significant floor sections

from estimation process. The floor estimation technique

coupled with sensor response functions for two different

point cloud generators further investigates into the

robustness of the method when deployed on two distinct

sensors i.e. RGB+D sensor and a stereo vision camera. In

our experiments we segment navigable floor planes in real-

time for a slowly moving sensor. The location and

geometrical parameters of the floor planes are updated in a

global coordinate systemwhenever a change their location is

detected. The planes are associated to a grid map which

serves as a path-planning reference to a mobile robot used in

our experiments. The results of floor detection and the

precision of floor anomaly detection are compared sensor-

wise and with the ground truth defined by obstacle heights

and configuration.

1. INTRODUCTION

Ground-plane or floor detection and segmentation

constitute a fundamental step in any AGV (Automated

Guided Vehicle) path planning process. As mobile robot
applications are finding their way fast into our household and
officespace, reliable and safe navigation is facing more
challenges to address in terms of dealing with increasingly
complex obstacle space. Planar surfaces have a very wide
range of geometrical and non-geometrical properties, for
example their orientation, their shape and size, texture and
color. All these properties have either a positive or negative
impact on the accuracy in 3D information produced bya
sensing device. In our experiments we employ two different
kinds of 3D sensors based on non-overlapping technologies,
namely Microsoft Kinect RGB+D sensor and Point Grey
Bumblebee stereo vision camera. This allows us to test our
ground-plane detection technique over two 3D datasets
having distinct sensor response to objects at the same
distance and accuracy thresholds.

From the standpoint of the authors, the estimation of the
floor planes needs to be highly accurate in order to enable
the indoor AGV to be able to differentiate between floor and
obstacles as low as just 1.0 cm. Indoor AGVs can usually
navigate through wheelchair accessible surfaces thus
throughout our experiments we categorize wheelchair
accessible pathways as navigable.

It may be mentioned here that 3D sensors employed in
our experiments produce large amount of data and thus in
order to keep the floor detection to follow the real time
constraints, the proposed method relies upon an object
oriented, threaded implementation of pre-optimized
segmentation and filtering techniques from open source
libraries such as OpenCV, Mobile Robot Planning Toolkit
(MRPT) and Point Cloud Library (PCL).

2. RELATED WORK

Although other related methods emphasize on the accuracy
of 3D reconstruction [1], ground plane detection using
minimal or noisy 3D data [2] and detection of dominant
planes in the environment [3] , none of the works suggest a
method that detects both dominant and sub-dominant planes
along with the height based classification of obstacles. The
proposed method not only addresses the navigability
problem associated with variations in floor plane but also
presents a real-time detection technique that can compromise
on accuracy given the available computational resources.
The compromise occurs in four respects (i) the amount of 3D
data to be processed, (ii) the amount of plane detection

search-space under consideration, (iii) the fineness in the
resolution of the floor plane and (iv) the number of possible
inclination angles for the planes. This highly customizable
technique allows optimized use of precious onboard and
remote computational resources. Among other obstacle
detection methods some ([4][5]) completely ignore the
significance of detecting the ground plane and variations in
within it while others [6] use pixel based region
segmentation and classification techniques that may or may
not be able to classify floor anomalies. In contrast to all
discussed approaches, the proposed method has the
reliability and accuracy advantage since it processes the
dense point clouds in real-time in order to detect floor planes
with varying resolution and angle accuracy. The method
effectively compresses the dense point clouds into compact
surfels [7] thus contributing to the domain of compression
for navigation data.

Figure 1 (a) Obstacle test bed (b) corresponding grid-map at 0.1m

resolution (b) at 0.2m resolution and (c) at 0.3m resolution.

3. PROBLEM DESCRIPTION

3.1 Grid-map

A certain map location is identified by Cartesian
coordinates (in meters) for a particular location within a
global map on which AGV path needs to be planned. These
Cartesian coordinates are actually the centroid of a square
shaped region logically defined on a map stored at the robot
memory. A collection of such square shaped adjacent regions
constitute the global grid-map for our problem. The length of
the side of a squared region is termed as the “map
resolution” for our problem. A snapshot of a global grid-
map is represented in figure. 1.

We assume that a Grid-map is available for a robot that
needs to navigate through an indoor environment. The Grid-
map can be converted in shape of an eight connected
graph , a set of vertices and edges, which can be
later used for implementing path planning algorithms. The
unit of space for the grid-map is a vertex as defined in the
next section. The dimensions of the grid-map unit exactly
represent the physical space. Each vertex can be assigned a
value between 0 and 1. Here 1 represents the absolute
belief that the location is navigable while 0 represents the
exact opposite of this belief. Any intermediate value

represents the degree of the belief regarding the navigable
status of a particular location as per (i).

 …(i)
The criterion for marking a certain vertex as accessible

includes calculating the difference in the height of any two
adjacent vertices. If the calculated difference d is greater than
a pre-defined threshold (T) then the AGV travel between two
adjacent vertices is restricted. The criterion is illustrated by
(ii).

{

} …(ii)

3.2 Population of Grid-Map

We define a vertex within graph G as
 . Here x and y are the index of the vertex
on grid-like eight connected graph. Variable
is a set of 3D points which belongs to a plane detected at a
vertex . Variable Z represents the largest z-coordinate

value detected by the proposed method among the set
plane_points. In other words Z represents the highest point
from the ground plane within the set plane_points. The
ultimate objective of the grid-map is to differentiate between
traversable and non-traversable vertices. For this purpose the
vertices are assigned values based upon the height and slope
of the detected plane. The less the height and the slope, the
more likely it is for the vertex to be traversable.

3.3 Sensors and Error Modeling

For the Microsoft Kinect sensor, the following

expression from [8] is used to predict the random error in

depth data from the sensor.

 …(iii)

where denotes the distance (depth) of a point k in the

object space, b is the base length and f is the focal length of

the infrared camera, m is the parameter of a linear

normalization for disparity d, with and respectively

are the standard deviation of the measured normalized

disparity and the standard deviation of the calculated depth.

Expression (iii) in essence denotes that the random error of

depth measurement is proportional to the square distance

from the sensor to the object. The plane detection

parameters were adjusted using the monotonically

increasing function (iii) as the distance Z of points from the

sensor increases. It must be mentioned here that as the

distance of detected planes increase from the sensor it

becomes harder for the proposed method to detect small

variations due to the increasing standard deviation of the

calculated . Thus the proposed work assigns more

confidence level to the variations detected within a range of

(a)

)

(b)

(c) (d)

3 meters () from the sensor as compared to the

variations detected at the maximum range of 5m, where the

standard deviation itself stands at 4cm.

For Bumblebee XB3 color stereo vision camera, an

accuracy function is provided by Point Grey Research Inc.

(given in expression (iv), detailed in [9]), the plane detection

parameters for our algorithm were adjusted to avoid the

noise to be considered as obstacles.

 …(iv)

Here represents the standard deviation of calculated

depth error, denotes the uncertainty in disparity, f, b and

 have the same meaning as for expression (iii). Figure 2

represents the increase in standard deviation in

calculation with respect to increase in object distance from

the camera. In the case of Bumblebee camera the standard

deviation is relatively very less for first 5 meters.

Obstacles or anomalies with height difference as low 1 cm

can be detected easily within first 3 meters as errors hover

around cm.

It may be mentioned here that Kinect sensor and

Bumblebee stereo vision camera have very different

responses to obstacles at the same distance with the same

texture or smoothness properties.

Figure 2 Distance vs. Accuracy chart for Point Grey Bumblebee stereo

vision camera for 1280x960 resolution (wide baseline).

3.4 The Problem

The input to proposed method constitutes of a set of 3D
points . These points are gathered via any
one of the two sensors mentioned in detail in the previous
section. The objective of the proposed method is to detect the
navigable floor planes by fitting all possible planes to the
input 3D points consuming minimal time and resources.
Furthermore the method should also provide the plane
orientation and location information for all the non-
traversable planes, which are categorized as obstacles with
reference to the presented method.

All those points in the input point cloud are clipped
which lie outside the region of interest (ROI). In our
experiments, the ROI is a cuboid with the height equivalent

to that of the robot (along with sensors) used for navigation
(75cm), width equals to 400cm and length equals to 490cm.
The location of the sensor with reference to the ROI is
shown in figure 5. It is ensured that the sensor location
bisects the ROI width. The argument behind choosing an
area of roughly 4x5 meters in front of robot is that a mobile
robot only needs as much area in front of it to be able to plan
its immediate path. A drawback of choosing such an ROI is
that a robot has to rely on past data or on some other form of
sensors to be aware of terrain in its vicinity that is not part of
the ROI. At the same time relatively small size of an ROI
allows us to freely apply expensive filtering techniques as
well as relay of 3D data over the network for off-board
processing.

Figure 3 Sensors mounted on Powerbot for experimentation.

4. THE FLOOR DETECTION AND SEGMENTATION
METHOD

C

2. Extract ROI

3. Split ROI into
uniform sub-

regions and apply
execution priority

4. Apply Statistical
Outlier Removal
filter to reduce

outliers for each
sub-region

5. For each sub-
region run RANSAC

plane fitting
method to obtain
dominant plane

1. Capture Point
Cloud at location X,Y

and Theta

5.1
Resubmit

residual points
for further plane

detection until no
points
remain

Plane
orientation

and location
repository

6. Assign detected
planes to the map

Figure 4 Floor detection and segmentation flowchart

4.1 Capturing Point Cloud at pose x, y and
Although there is no particular innovation involved at this

step but it is worth mentioning that sensors involved in the

experiments produce very dense point clouds. The need was
felt to down-sample the incoming data but this approach was
quickly retreated as any beneficial down-sampling technique
proved to be very expensive in terms of execution time.
Although dense point clouds are an added burden on
computational resources but techniques were developed at
later steps in the method to avoid processing unnecessary
points. Kinect sensor pose, and Bumblebee camera
pose, are associated with observations from
respective sensors. This enables the proposed method to map
each point to the vertex of the global grid-map G while

the mobile robot mounted with multiple sensors navigates
the environment.

4.2 Extract ROI

As discussed in the previous section, all points lying
within ROI are extracted and passed on to the sub-sectioning
module for further processing. ROI is kept standard for both
sensors used in our experiments although sensors with
different field of view (FOV) ideally require customized
ROI.

4.3 Sub-sectioning ROI and Execution Priority

ROI is split up into a grid of cuboids . The x-y-z
dimensions of the grid are equal to the dimensions of the
ROI as shown in figure. The x resolution () and y
resolution () of however is a tunable parameter. If the
resolution is set too low, the RANSAC based plane fitting
algorithm will fail to detect small variations in the floor as
the random error in depth data (and) will surpass

floor variations. On the other if the resolution is set too high,
the computational burden will render the method non real-
time. High resolution nonetheless makes the map nearer to
its 3D representation but the foremost priority of the method
is to achieve reliable and effective navigation. Thus fast floor
detection can be achieved at the expense of lower resolution
for . As a rule of thumb, the more quicker the rate of

growth for functions or , the more higher the

resolution should be for as represented by expression (v).

 O

 O(…(v)

Figure 5 ROI divided into sub-sections. The x-y resolution for dividing

ROI is a tunable parameter.

The sub-sectioning approach apart not only serves to
detect the floor plane accurately but also helps to reduce the
computational load on filtering and segmentations
algorithms that can have the complexity up to order
where n is the number of 3D points per subsection. Each
subsection is assigned an execution priority in order make
the proposed method detect the floor planes located closer to
the robot much earlier as compared to the floor planes
situated away from the robot. The execution priority can be
adjusted in a variety of ways in order to facilitate quick path-
planning but no experiments were designed to quantify
advantages of such an approach. Experiments were
conducted however where sub-sections that were the farthest
from the robot were skipped from the floor plane detection
loop thus saving expensive computational cycles.

4.4 Sparse Outlier removal through Statistical Outlier

Removal Filter
Measurement errors from deployed sensors in our

experiments produce significant outliers. Such outliers are
removed by performing a statistical analysis on the
neighborhood of each 3D point. The points which lie outside
the noise bounds defined by expression (iii) and (iv) are
trimmed from the output of respective sensors. The sparse
outlier removal technique used within our method is based
on the computation of the distribution of point to neighbors’
distances in the input dataset which is generally a standard
technique under the given circumstances [10]. A cut-off
cardinality threshold is used to determine the n closest
neighbors to the 3D point under consideration. Now for each
3D point, mean distance between the point and all its
neighbors is computed. The distribution of distances is
assumed to be a normal distribution N with a mean and a
standard deviation . Each point whose mean is outside an
interval defined by the mean of global distances and standard
deviation can be considered as outlier and clipped from the
output point cloud produced by the sensor. Expression (vi)
illustrates the outlier set.

 …(vi)

Here, is an input parameter which helps to define a quintile
of the distribution of distances N(0,1) for each 3D point x. If

the value of absolute difference lies outside

the range, point x is considered an outlier. K on

the hand is the number of closest neighbors whose distances
from point x form the normal distribution N. This step is
repeated for all point cloud sub-sections. The filtered point
cloud for each sub-section is then processed for plane
detection.

4.5 RANSAC based recursive segmentation for

dominant plane detection
This step detects multiple planes within a given sub-

section of the point cloud by recursively executing RANSAC
or “Random Sample Consensus” method for plane fitting.
Here the notion of recursion means that the same
segmentation algorithm is applied to a sub-set of input point
cloud repeatedly. This sub-set consists of leftover points ()
from the last iteration which were not assigned to a plane.

Thus these leftover points are fed to the segmentation
algorithm again and again unless either no more points can
be assigned to a plane or a predefined recursion iteration
limit is hit as signified by steps 5 and 5.1 in figure 4. The
RANSAC based plane fitting algorithm requires three
parameters (i) a normal to the plane (), (ii) the acceptable
error () in the Euler angles of the plane whose normal is
and (iii) the distance threshold for a 3D point to be part
of the plane. The distance threshold is the maximum
allowable distance between the point and its projection on
the plane for it to be considered as part of the plane. It must
be mentioned here that each time a subsection of point cloud

 is submitted to the segmentation

algorithm, the algorithm after detecting the dominant floor
plane, preserves the normal to the detected plane . The

rest sub-dominant planes within the subsection are stored in

a set .

4.6 Plane assignment to the grid-map

After the detection of dominant and sub-dominant planes
within each

 of the input point cloud from

the sensor, the planes need to be assigned to the grid-map .
It is important here to note that a radius is estimated for each
detected plane. This radius depends upon the 2D area that the
points span across. The radius is made a part of vector
 . This step effectively converts into a surfel. The

surfels are then evaluated against each vertex of the grid-map
 . If a surfel is found to be spanning across certain vertices
(or a vertex), each vertex is assigned a value depending upon
the height of surfel from the floor. In case the surfel itself
represents the floor it is assigned a maximum value of 1.0.
For the surfels at maximum height (in experiments this
height equals 75cm), the vertex is assigned a minimum value
of 0.0. The elevation angle that a surfel makes from the floor
further affects he value of each vertex. In experiments each
vertex value was passed through a linear function that maps
the vertex value to 100 percent if the elevation angle is
and to 20 percent if the elevation angle is . It takes many
factors to decide the threshold value for navigability of floor,
including robot ground clearance, robot Center of Gravity,
application and its speed constraints.

 Following pseudo code details the recursive floor
segmentation algorithm.

4.6.1. Algorithm – Recursive Floor Segmentation

procedure initialize()

{2.1} set all =(0,0,1); //a normal facing the direction opposite

to the floor
{2.2} G=initialize_grid_map (0.0, resolution, X*Y);

//all values within grid-map are 0.0 by default .i.e. all nodes
are set to be non-traversable. Resolution is set to be at a
pre-defined value. X and Y define the total length and
width of the grid-map.

{2.3} set and ;
{2.4} set recursion_iterations;

{2.5} for all subsections

{2.6} set error_tolerance (
)

 ;

procedure process_pointCloud (pointCloud P)
{3.1} P = extract_ROI (P);

{3.2} = subsection_pointCloud(P);

{3.3} for all subsections

{3.4} {
 statistical_outlier_removal (

)

{3.5} floor_detection(
);}

procedure floor_detection(subsection graph)

{4.1} for all subsections

{4.2} { set i=0;

{4.3} = ;

{4.4} recursive_plane_segmentation(
);

{4.5} update_map(G,);}

procedure recursive_plane_segmentation (pointCloud)

{5.1} if (=) or (i recursion_iterations) where

{5.2} { return ;}

{5.3} e= error_tolerance (
);

{5.4} if (i=0)

{5.5} {(
 = RANSAC_planefitting(}

{5.6} else

{5.7} { RANSAC_planefitting(
{5.8} = (}

{5.9} recursive_plane_fitting(
{5.10} i=i+1;

procedure main()
{1.1} initialize();
{1.2} forever
{1.3} process_pointCloud (sensorOutput());

5. EXPERIMENTATION AND PERFORMANCE
ANALYSIS

We gathered the point clouds using Kinect sensor with
640x480 resolution@30 FPS and Bumblebee stereo vision
camera with two resolutions 1280x960@7.5FPS and
640x480@15FPS (wide baseline). In order to process extra
dense clouds from 1280x960 resolution images from
Bumblebee camera, the point cloud ROI was serialized and
sent over the network to a high-end networked PC for
efficient real-time processing. The mobile robotics platform
used for our experimentation included PowerBot from Adept
Mobilerobots, Intel Dual Core 1.8 GHz Processor onboard
the robot and Intel i7 2.20 GHz Processor for off-board
processing. In order to deliver real-time performance using
the available resources, the search-space for RANSAC plane
fitting algorithm is constrained by providing the fitting
algorithm with last know floor surface normals for each

point cloud subsection
 . This process is represented by

statements {5.4}{5.5} listed in section 4.6.1.

Obstacles of varying heights were placed at varying
distance from the sensor as depicted in the figure .6. The
ground truth and measured obstacle heights are compared in
table. 1. It must be noted that ideal values for and
in the experimental scenario were found to be 4 and 3 for
both the Kinect sensor and the Bumblebee camera since the
accuracy gain is not feasible enough as compared to the
additional computational load if the values are boosted
higher than and . The total area that is
sub-sectioned in front of the sensor is (6.0x4.2) 25.2 for
Bumblebee stereo camera and (5.5x3.0) 16.5 for Kinect
sensor. Table 1 offers an accuracy comparison of the
proposed method on the two sensors used. 20 experiments
were conducted with varying obstacle configuration for
different () where the proposed method was
executed for each sensor separately. The maximum height of
each sensor was measured manually and served as ground-
truth. The errors between the detected maximum heights of
the grid-map vertices and the ground truth were calculated.
These average errors are shown in Table 1. It must be
mentioned here that as the sub-section resolution increases
the added processing to sub-section point cloud and
additional function calls starts to affect the execution time of
the proposed method.

Average error in maximum

detected height

Obstacle
distance from

sensor
< 3 meters

>3 meters
<5.5meters

3 , 2
Kinect sensor cm cm

Bumblebee
camera

 cm cm

4 , 3
Kinect sensor cm cm

Bumblebee
camera

 cm cm

8 , 6
Kinect sensor cm cm
Bumblebee

camera
 cm cm

12 , 9
Kinect sensor cm cm
Bumblebee

camera
 cm cm

6. DISCUSSION

The primary output of the proposed method is a grid-map

which can submitted to grid-based path planning method
such as A* or D*. Apart from the primary output, the method
also returns 3D height maps of the arena. Such maps are
relatively much dense as compared to grid-maps and can be
compressed and processed for decomposition into Voronoi
cells. Each 3D point provided in the input point cloud is
associated to a plane (given the recursion_iterations is set to a

very large value) by the end of the execution of this method
thus the proposed method can be termed as an exhaustive
mapping method for a given set of input 3D points. Figure 6
and 7 show the obstacle test bed and the corresponding 3D
terrain map generated by the method for
and . The x-y resolution of terrain map is 0.2m.

7. CONCLUSION

In this paper, a real-time and accurate floor detection
method is proposed that is tested on a mobile robotics

platform while using two distinct sensor technologies. The
method uses various parameters that can be for scenarios
where on-board computational resources are expensive, in
order to render real-time floor detection performance. The
proposed method sub-sections the floor for overall improved
execution time and selective processing of prioritized floor
sections. Sensor error models are used to detect floor
accurately up to 6 meters away from the sensors and detect
obstacles as low as 1cm within the range of 3 meters. The
method currently uses surfels to remember floor state
between consecutive observations. The surfel parameters are
improved as the distance between the detected surfel and
sensor decreases. The same concept can be used in future to
track the floor surface in noisy environments such as floors
crowded with people. Furthermore the presented method also
proposes a flexible floor representation (using surfels) whose
parameter accuracy can be improved by using multiple
sensors simultaneously.

8. Acknowledgment:

"This work is supported by National Plan for Science
and Technology program at King Saud University,
Saudi Arabia Project: Number 08-ELE300

Table. 1. Method Accuracy: Sensor wise comparison

Figure 7 The 3D terrain map representing the detected planes. Color
temperature represents height.

Figure 6 The obstacle test bed consists of flat floor and objects with

varying slopes and heights

9. REFERENCES

[1] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R.
Newcombe, P. Kohli, J. Shotton, S. Hodges, D.
Freeman, A. Davison, and others, “KinectFusion: real-
time 3D reconstruction and interaction using a moving
depth camera,” in Proceedings of the 24th annual ACM
symposium on User interface software and technology,
2011, pp. 559–568.

[2] M. Heracles, B. Bolder, and C. Goerick, “Fast detection
of arbitrary planar surfaces from unreliable 3D data,” in
Intelligent Robots and Systems, 2009. IROS 2009.
IEEE/RSJ International Conference on, 2009, pp.
5717–5724.

[3] K. Gong and R. Green, “Ground-plane detection using

stereo depth values for wheelchair guidance,” in Image
and Vision Computing New Zealand, 2009. IVCNZ’09.
24th International Conference, 2009, pp. 97–101.

[4] M. Olsson, “Obstacle Detection using Stereo Vision

using Unmanned Ground Vehicles,” LinkoPing
University, Sweden, 2009.

[5] C. D. Pantilie, S. Bota, I. Haller, and S. Nedevschi,

“Real-time obstacle detection using dense stereo vision
and dense optical flow,” in Intelligent Computer
Communication and Processing (ICCP), 2010 IEEE
International Conference on, 2010, pp. 191–196.

[6] E. Fazl-Ersi and J. Tsotsos, “Region classification for

robust floor detection in indoor environments,” Image
Analysis and Recognition, pp. 717–726, 2009.

[7] P. Henry et al. RGB-D mapping: Using depth cameras

for dense 3D modeling of indoor environments. In Proc.
of the Int. Symposium on Experimental Robotics
(ISER), 2010.

[8] K. Khoshelham and S. O. Elberink, “Accuracy and

Resolution of Kinect Depth Data for Indoor Mapping
Applications,” Sensors, vol. 12, no. 2, pp. 1437–1454,
Feb. 2012.

[9] Point Grey Research Inc, “Stereo Accuracy and Error

Modeling,” Point Grey Knowledge Base Article. 19-
Apr-2004.

[10] I. Ben-Gal, “Outlier Detection,” in Data mining : a

knowledge discovery approach, New York: Springer,
2005.

