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Abstract 

Real world indoor environments are rich in planar surfaces.  

Floor detection or ground-plane detection is a crucial 

requirement for a robotic navigation task. Despite frequent 

successes in this area, problems with detection of navigable 

floor with multiple planar and non-planar slopes at multiple 

heights still exist. For robust and safe navigation, such small 

variations such as floor joins, carpet deformities, raised 

steps and floor gradients need to be detected and robot path 

and kinodynamics plan must be adjusted accordingly. The 

authors suggest a recursive RANSAC segmentation based 

algorithm that estimates the dominant and sub-dominant 

plane models for all the navigable planes within a detected 

floor or a ground plane. The algorithm also divides the input 

point clouds intelligently into multiple regions of interest for 

both efficiency and accuracy enhancement. The recursive 

estimation approach for determining plane parameters helps 

to detect multiple planes within each region. Among other 

benefits of this approach, reduction of search space size for 

the estimation of plane parameters stands out to be the most 

striking result of this work. This region wise plane 

estimation approach also helps to reduce the computational 

load by selectively dropping less significant floor sections 

from estimation process. The floor estimation technique 

coupled with sensor response functions for two different 

point cloud generators further investigates into the 

robustness of the method when deployed on two distinct 

sensors i.e. RGB+D sensor and a stereo vision camera. In 

our experiments we segment navigable floor planes in real-

time for a slowly moving sensor. The location and 

geometrical parameters of the floor planes are updated in a 

global coordinate systemwhenever a change their location is 

detected. The planes are associated to a grid map which 

serves as a path-planning reference to a mobile robot used in 

our experiments. The results of floor detection and the 

precision of floor anomaly detection are compared sensor-

wise and with the ground truth defined by obstacle heights 

and configuration. 

 

1. INTRODUCTION 

 
Ground-plane or floor detection and segmentation 

constitute a fundamental step in any AGV (Automated 

Guided Vehicle) path planning process. As mobile robot 
applications are finding their way fast into our household and 
officespace, reliable and safe navigation is facing more 
challenges to address in terms of dealing with increasingly 
complex obstacle space. Planar surfaces have a very wide 
range of geometrical and non-geometrical properties, for 
example their orientation, their shape and size, texture and 
color. All these properties have either a positive or negative 
impact on the accuracy in 3D information produced bya 
sensing device. In our experiments we employ two different 
kinds of 3D sensors based on non-overlapping technologies, 
namely Microsoft Kinect RGB+D sensor and Point Grey 
Bumblebee stereo vision camera. This allows us to test our 
ground-plane detection technique over two 3D datasets 
having distinct sensor response to objects at the same 
distance and accuracy thresholds.   

From the standpoint of the authors, the estimation of the 
floor planes needs to be highly accurate in order to enable 
the indoor AGV to be able to differentiate between floor and 
obstacles as low as just 1.0 cm. Indoor AGVs can usually 
navigate through wheelchair accessible surfaces thus 
throughout our experiments we categorize wheelchair 
accessible pathways as navigable.  

It may be mentioned here that 3D sensors employed in 
our experiments produce large amount of data and thus in 
order to keep the floor detection to follow the real time 
constraints, the proposed method relies upon an object 
oriented, threaded implementation of pre-optimized 
segmentation and filtering techniques from open source 
libraries such as OpenCV, Mobile Robot Planning Toolkit 
(MRPT) and Point Cloud Library (PCL).  
 

2. RELATED WORK 
 
Although other related methods emphasize on the accuracy 
of 3D reconstruction [1], ground plane detection using 
minimal or noisy 3D data [2] and detection of dominant 
planes in the environment [3] , none of the works suggest a 
method that detects both dominant and sub-dominant planes 
along with the height based classification of obstacles. The 
proposed method not only addresses the navigability 
problem associated with variations in floor plane but also 
presents a real-time detection technique that can compromise 
on accuracy given the available computational resources. 
The compromise occurs in four respects (i) the amount of 3D 
data to be processed, (ii) the amount of plane detection 



search-space under consideration, (iii) the fineness in the 
resolution of the floor plane and (iv) the number of possible 
inclination angles for the planes. This highly customizable 
technique allows optimized use of precious onboard and 
remote computational resources. Among other obstacle 
detection methods some ([4][5]) completely ignore the 
significance of detecting the ground plane and variations in 
within it while others [6] use pixel based region 
segmentation and classification techniques that may or may 
not be able to classify floor anomalies. In contrast to all 
discussed approaches, the proposed method has the 
reliability and accuracy advantage since it processes the 
dense point clouds in real-time in order to detect floor planes 
with varying resolution and angle accuracy. The method 
effectively compresses the dense point clouds into compact 
surfels [7] thus contributing to the domain of compression 
for navigation data.  

 

 
Figure 1 (a) Obstacle test bed (b) corresponding grid-map at 0.1m 

resolution (b) at 0.2m resolution and (c) at 0.3m resolution. 

3. PROBLEM DESCRIPTION 
 
3.1 Grid-map 

A certain map location is identified by Cartesian 
coordinates (in meters) for a particular location within a 
global map on which AGV path needs to be planned. These 
Cartesian coordinates are actually the centroid of a square 
shaped region logically defined on a map stored at the robot 
memory. A collection of such square shaped adjacent regions 
constitute the global grid-map for our problem. The length of 
the side of a squared region is termed as the “map 
resolution” for our problem. A snapshot of a global grid- 
map is represented in figure. 1. 

We assume that a Grid-map is available for a robot that 
needs to navigate through an indoor environment. The Grid-
map can be converted in shape of an eight connected 
graph        , a set of vertices and edges, which can be 
later used for implementing path planning algorithms. The 
unit of space for the grid-map is a vertex as defined in the 
next section. The dimensions of the grid-map unit exactly 
represent the physical space. Each vertex can be assigned a 
value    between 0 and 1. Here 1 represents the absolute 
belief that the location is navigable while 0 represents the 
exact opposite of this belief. Any intermediate value 

represents the degree of the belief regarding the navigable 
status of a particular location as per (i).  

 
             

                                                              …(i) 
The criterion for marking a certain vertex as accessible 

includes calculating the difference in the height of any two 
adjacent vertices. If the calculated difference d is greater than 
a pre-defined threshold (T) then the AGV travel between two 
adjacent vertices is restricted. The criterion is illustrated by 
(ii).  

 

                                       

{ 

                                              

}                     …(ii) 
 
3.2 Population of Grid-Map 

We define a vertex within graph G as      
                . Here x and y are the index of the vertex 
on grid-like eight connected graph. Variable              
is a set of 3D points which belongs to a plane detected at a 
vertex      . Variable Z represents the largest z-coordinate 

value detected by the proposed method among the set 
plane_points. In other words Z represents the highest point 
from the ground plane within the set plane_points. The 
ultimate objective of the grid-map is to differentiate between 
traversable and non-traversable vertices. For this purpose the 
vertices are assigned values based upon the height and slope 
of the detected plane. The less the height and the slope, the 
more likely it is for the vertex to be traversable.  
 
3.3 Sensors and Error Modeling 

For the Microsoft Kinect sensor, the following 

expression from [8] is used to predict the random error in 

depth data from the sensor. 

          
 

  
   

                          …(iii) 

 

where    denotes the distance (depth) of a point k in the 

object space, b is the base length and f is the focal length of 

the infrared camera, m is the parameter of a linear 

normalization for disparity d, with     and    respectively 

are the standard deviation of the measured normalized 

disparity and the standard deviation of the calculated depth. 

Expression (iii) in essence denotes that the random error of 

depth measurement is proportional to the square distance 

from the sensor to the object. The plane detection 

parameters were adjusted using the monotonically 

increasing function (iii) as the distance Z of points from the 

sensor increases. It must be mentioned here that as the 

distance of detected planes increase from the sensor it 

becomes harder for the proposed method to detect small 

variations due to the increasing standard deviation of the 

calculated   . Thus the proposed work assigns more 

confidence level to the variations detected within a range of 

(a) 

) 

(b) 

(c) (d) 



3 meters (          ) from the sensor as compared to the 

variations detected at the maximum range of 5m, where the 

standard deviation     itself stands at 4cm.   

For Bumblebee XB3 color stereo vision camera, an 

accuracy function is provided by Point Grey Research Inc. 

(given in expression (iv), detailed in [9]), the plane detection 

parameters for our algorithm were adjusted to avoid the 

noise to be considered as obstacles. 

              
   

 

  
                    …(iv) 

Here    represents the standard deviation of calculated 

depth error,    denotes the uncertainty in disparity, f, b and 

   have the same meaning as for expression (iii). Figure 2 

represents the increase in standard deviation in    

calculation with respect to increase in object distance from 

the camera. In the case of Bumblebee camera the standard 

deviation     is relatively very less for first 5 meters. 

Obstacles or anomalies with height difference as low 1 cm 

can be detected easily within first 3 meters as errors hover 

around        cm. 

It may be mentioned here that Kinect sensor and 

Bumblebee stereo vision camera have very different 

responses to obstacles at the same distance with the same 

texture or smoothness properties.     
   

 
Figure 2 Distance vs. Accuracy chart for Point Grey Bumblebee stereo 

vision camera for 1280x960 resolution (wide baseline). 

 
3.4 The Problem 

The input to proposed method constitutes of a set of 3D 
points             . These points are gathered via any 
one of the two sensors mentioned in detail in the previous 
section. The objective of the proposed method is to detect the 
navigable floor planes by fitting all possible planes to the 
input 3D points consuming minimal time and resources. 
Furthermore the method should also provide the plane 
orientation and location information for all the non-
traversable planes, which are categorized as obstacles with 
reference to the presented method.        

All those points in the input point cloud are clipped 
which lie outside the region of interest (ROI). In our 
experiments, the ROI is a cuboid with the height equivalent 

to that of the robot (along with sensors) used for navigation 
(75cm), width equals to 400cm and length equals to 490cm. 
The location of the sensor with reference to the ROI is 
shown in figure 5. It is ensured that the sensor location 
bisects the ROI width. The argument behind choosing an 
area of roughly 4x5 meters in front of robot is that a mobile 
robot only needs as much area in front of it to be able to plan 
its immediate path. A drawback of choosing such an ROI is 
that a robot has to rely on past data or on some other form of 
sensors to be aware of terrain in its vicinity that is not part of 
the ROI. At the same time relatively small size of an ROI 
allows us to freely apply expensive filtering techniques as 
well as relay of 3D data over the network for off-board 
processing.  

 

Figure 3 Sensors mounted on Powerbot for experimentation. 

4. THE FLOOR DETECTION AND SEGMENTATION 
METHOD  
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Figure 4 Floor detection and segmentation flowchart 

4.1 Capturing Point Cloud at pose x, y and   
Although there is no particular innovation involved at this 

step but it is worth mentioning that sensors involved in the 



experiments produce very dense point clouds. The need was 
felt to down-sample the incoming data but this approach was 
quickly retreated as any beneficial down-sampling technique 
proved to be very expensive in terms of execution time. 
Although dense point clouds are an added burden on 
computational resources but techniques were developed at 
later steps in the method to avoid processing unnecessary 
points. Kinect sensor pose,       and Bumblebee camera 
pose,        are associated with observations from 
respective sensors. This enables the proposed method to map 
each point to the vertex       of the global grid-map G while 

the mobile robot mounted with multiple sensors navigates 
the environment.    
 
4.2 Extract ROI 

As discussed in the previous section, all points lying 
within ROI are extracted and passed on to the sub-sectioning 
module for further processing. ROI is kept standard for both 
sensors used in our experiments although sensors with 
different field of view (FOV) ideally require customized 
ROI. 

 
4.3 Sub-sectioning ROI and Execution Priority 

ROI is split up into a grid of cuboids    . The x-y-z 
dimensions of the grid are equal to the dimensions of the 
ROI as shown in figure. The x resolution (    ) and y 
resolution (    ) of    however is a tunable parameter. If the 
resolution is set too low, the RANSAC based plane fitting 
algorithm will fail to detect small variations in the floor as 
the random error in depth data (    and    ) will surpass 

floor variations. On the other if the resolution is set too high, 
the computational burden will render the method non real-
time. High resolution nonetheless makes the map nearer to 
its 3D representation but the foremost priority of the method 
is to achieve reliable and effective navigation. Thus fast floor 
detection can be achieved at the expense of lower resolution 
for    . As a rule of thumb, the more quicker the rate of 

growth for functions     or    , the more higher the 

resolution should be for     as represented by expression (v). 
 

    O                  

      O(                                    …(v) 

 

Figure 5 ROI divided into sub-sections. The x-y resolution for dividing 

ROI is a tunable parameter. 

The sub-sectioning approach apart not only serves to 
detect the floor plane accurately but also helps to reduce the 
computational load on filtering and segmentations 
algorithms that can have the complexity up to order       
where n is the number of 3D points per subsection. Each 
subsection is assigned an execution priority in order make 
the proposed method detect the floor planes located closer to 
the robot much earlier as compared to the floor planes 
situated away from the robot. The execution priority can be 
adjusted in a variety of ways in order to facilitate quick path-
planning but no experiments were designed to quantify 
advantages of such an approach. Experiments were 
conducted however where sub-sections that were the farthest 
from the robot were skipped from the floor plane detection 
loop thus saving expensive computational cycles. 
 
4.4 Sparse Outlier removal through Statistical Outlier 

Removal Filter   
Measurement errors from deployed sensors in our 

experiments produce significant outliers. Such outliers are 
removed by performing a statistical analysis on the 
neighborhood of each 3D point. The points which lie outside 
the noise bounds defined by expression (iii) and (iv) are 
trimmed from the output of respective sensors. The sparse 
outlier removal technique used within our method is based 
on the computation of the distribution of point to neighbors’ 
distances in the input dataset which is generally a standard 
technique under the given circumstances [10]. A cut-off 
cardinality threshold is used to determine the n closest 
neighbors to the 3D point under consideration. Now for each 
3D point, mean distance between the point and all its 
neighbors is computed. The distribution of distances is 
assumed to be a normal distribution N with a mean   and a 
standard deviation  . Each point whose mean   is outside an 
interval defined by the mean of global distances and standard 
deviation can be considered as outlier and clipped from the 
output point cloud produced by the sensor. Expression (vi) 
illustrates the outlier set. 

                                                    …(vi) 

Here,   is an input parameter which helps to define a quintile 
of the distribution of distances N(0,1) for each 3D point x. If 

the value of absolute difference              lies outside 

the            range, point x is considered an outlier. K on 

the hand is the number of closest neighbors whose distances 
from point x form the normal distribution N. This step is 
repeated for all point cloud sub-sections. The filtered point 
cloud for each sub-section is then processed for plane 
detection.  
 
4.5 RANSAC based recursive segmentation for 

dominant plane detection 
This step detects multiple planes within a given sub-

section of the point cloud by recursively executing RANSAC 
or “Random Sample Consensus” method for plane fitting. 
Here the notion of recursion means that the same 
segmentation algorithm is applied to a sub-set of input point 
cloud repeatedly. This sub-set consists of leftover points (  ) 
from the last iteration which were not assigned to a plane. 



Thus these leftover points are fed to the segmentation 
algorithm again and again unless either no more points can 
be assigned to a plane or a predefined recursion iteration 
limit is hit as signified by steps 5 and 5.1 in figure 4. The 
RANSAC based plane fitting algorithm requires three 
parameters (i) a normal to the plane (  ), (ii) the acceptable 
error ( ) in the Euler angles of the plane whose normal is    
and (iii) the distance threshold     for a 3D point to be part 
of the plane. The distance threshold is the maximum 
allowable distance between the point and its projection on 
the plane for it to be considered as part of the plane. It must 
be mentioned here that each time a subsection of point cloud 
              

   is submitted to the segmentation 

algorithm, the algorithm after detecting the dominant floor 
plane, preserves the normal to the detected plane     . The 

rest sub-dominant planes within the subsection are stored in 

a set     . 

 
4.6 Plane assignment to the grid-map  

After the detection of dominant and sub-dominant planes 
within each               

   of the input point cloud from 

the sensor, the planes need to be assigned to the grid-map  . 
It is important here to note that a radius is estimated for each 
detected plane. This radius depends upon the 2D area that the 
points    span across. The radius is made a part of vector 
    . This step effectively converts      into a surfel. The 

surfels are then evaluated against each vertex of the grid-map 
 . If a surfel is found to be spanning across certain vertices 
(or a vertex), each vertex is assigned a value depending upon 
the height of surfel from the floor. In case the surfel itself 
represents the floor it is assigned a maximum value of 1.0. 
For the surfels at maximum height (in experiments this 
height equals 75cm), the vertex is assigned a minimum value 
of 0.0. The elevation angle that a surfel makes from the floor 
further affects he value of each vertex. In experiments each 
vertex value was passed through a linear function that maps 
the vertex value to 100 percent if the elevation angle is    
and to 20 percent if the elevation angle is    .   It takes many 
factors to decide the threshold value for navigability of floor, 
including robot ground clearance, robot Center of Gravity, 
application and its speed constraints.  
   

 Following pseudo code details the recursive floor 
segmentation algorithm.  

 
4.6.1. Algorithm – Recursive Floor Segmentation     

procedure  initialize( ) 

{2.1}   set all      =(0,0,1); //a normal facing the direction opposite  

to the floor 
{2.2}    G=initialize_grid_map (0.0, resolution, X*Y);  

//all values within grid-map are 0.0 by default .i.e. all nodes 
are set to be non-traversable. Resolution is set to be at a 
pre-defined value. X and Y define the total length and 
width of the grid-map. 

{2.3}    set       and      ; 
{2.4}    set recursion_iterations;  

{2.5}    for all subsections   
    

{2.6}     set error_tolerance (  
   )    

              

                 
 ;     

  
procedure  process_pointCloud (pointCloud P)  
{3.1}    P = extract_ROI (P); 

{3.2}      = subsection_pointCloud(P             );     

{3.3}    for all subsections   
     

{3.4}     {  
     statistical_outlier_removal (  

   ) 

{3.5}       floor_detection(  
   );} 

 

procedure  floor_detection(subsection graph   ) 

{4.1}    for all subsections   
          

{4.2}        { set i=0; 

{4.3}         =  ; 

{4.4}   recursive_plane_segmentation(    
    ); 

{4.5}         update_map(G,          );} 

 

procedure  recursive_plane_segmentation (pointCloud   )  

{5.1}   if (  =   ) or (i   recursion_iterations) where       
     

{5.2}    { return ;} 

{5.3}   e= error_tolerance (  
   );          

{5.4}   if  (i=0 )          

{5.5}        {(       
   = RANSAC_planefitting(             } 

{5.6}   else 

{5.7}        {            RANSAC_planefitting(            
{5.8}                = (         } 

{5.9}    recursive_plane_fitting(     
{5.10} i=i+1; 
 
procedure  main( ) 
{1.1}    initialize( ); 
{1.2}    forever 
{1.3}         process_pointCloud (sensorOutput()); 
  

 
 

5. EXPERIMENTATION AND PERFORMANCE 
ANALYSIS 
 

We gathered the point clouds using Kinect sensor with 
640x480 resolution@30 FPS and Bumblebee stereo vision 
camera with two resolutions 1280x960@7.5FPS and 
640x480@15FPS (wide baseline). In order to process extra 
dense clouds from 1280x960 resolution images from 
Bumblebee camera, the point cloud ROI was serialized and 
sent over the network to a high-end networked PC for 
efficient real-time processing. The mobile robotics platform 
used for our experimentation included PowerBot from Adept 
Mobilerobots, Intel Dual Core 1.8 GHz Processor onboard 
the robot and Intel i7 2.20 GHz Processor for off-board 
processing. In order to deliver real-time performance using 
the available resources, the search-space for RANSAC plane 
fitting algorithm is constrained by providing the fitting 
algorithm with last know floor surface normals      for each 

point cloud subsection   
   . This process is represented by 

statements {5.4}{5.5} listed in section 4.6.1.  



Obstacles of varying heights were placed at varying 
distance from the sensor as depicted in the figure .6. The 
ground truth and measured obstacle heights are compared in 
table. 1. It must be noted that ideal values for       and      
in the experimental scenario were found to be 4 and 3 for 
both the Kinect sensor and the Bumblebee camera since the 
accuracy gain is not feasible enough as compared to the 
additional computational load if the values are boosted 
higher than         and       .  The total area that is 
sub-sectioned in front of the sensor is (6.0x4.2) 25.2    for 
Bumblebee stereo camera and (5.5x3.0) 16.5    for Kinect 
sensor. Table 1 offers an accuracy comparison of the 
proposed method on the two sensors used. 20 experiments 
were conducted with varying obstacle configuration for 
different (            ) where the proposed method was 
executed for each sensor separately. The maximum height of 
each sensor was measured manually and served as ground-
truth. The errors between the detected maximum heights of 
the grid-map vertices and the ground truth were calculated. 
These average errors are shown in Table 1. It must be 
mentioned here that as the sub-section resolution increases 
the added processing to sub-section point cloud and 
additional function calls starts to affect the execution time of 
the proposed method.      
 

            

 
Average error in maximum 

detected height 

Obstacle 
distance from 

sensor 
< 3 meters 

>3 meters 
<5.5meters 

3 , 2 
Kinect sensor       cm       cm 

Bumblebee 
camera 

      cm       cm 

4 , 3 
Kinect sensor       cm       cm 

Bumblebee 
camera 

      cm       cm 

8 , 6 
Kinect sensor       cm       cm 
Bumblebee 

camera 
      cm       cm 

12 , 9 
Kinect sensor       cm       cm 
Bumblebee 

camera 
      cm       cm 

 
 
 
6. DISCUSSION 

 
The primary output of the proposed method is a grid-map 

which can submitted to grid-based path planning method 
such as A* or D*. Apart from the primary output, the method 
also returns 3D height maps of the arena. Such maps are 
relatively much dense as compared to grid-maps and can be 
compressed and processed for decomposition into Voronoi 
cells. Each 3D point provided in the input point cloud is 
associated to a plane (given the recursion_iterations is set to a 

very large value) by the end of the execution of this method 
thus the proposed method can be termed as an exhaustive 
mapping method for a given set of input 3D points.  Figure 6 
and 7 show the obstacle test bed and the corresponding 3D 
terrain map generated by the method for         
and       . The x-y resolution of terrain map is 0.2m. 

 

7. CONCLUSION 
 

In this paper, a real-time and accurate floor detection 
method is proposed that is tested on a mobile robotics 

 
 
platform while using two distinct sensor technologies. The 
method uses various parameters that can be for scenarios 
where on-board computational resources are expensive, in 
order to render real-time floor detection performance. The 
proposed method sub-sections the floor for overall improved 
execution time and selective processing of prioritized floor 
sections. Sensor error models are used to detect floor 
accurately up to 6 meters away from the sensors and detect 
obstacles as low as 1cm within the range of 3 meters. The 
method currently uses surfels to remember floor state 
between consecutive observations. The surfel parameters are 
improved as the distance between the detected surfel and 
sensor decreases. The same concept can be used in future to 
track the floor surface in noisy environments such as floors 
crowded with people. Furthermore the presented method also 
proposes a flexible floor representation (using surfels) whose 
parameter accuracy can be improved by using multiple 
sensors simultaneously. 
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Table. 1. Method Accuracy: Sensor wise comparison   

Figure 7 The 3D terrain map representing the detected planes. Color 
temperature represents height. 

Figure 6 The obstacle test bed consists of flat floor and objects with 

varying slopes and heights 
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